首页> 外文OA文献 >Probability hypothesis density filtering for real-time traffic state estimation and prediction
【2h】

Probability hypothesis density filtering for real-time traffic state estimation and prediction

机译:用于实时交通状态估计和预测的概率假设密度滤波

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The probability hypothesis density (PHD) methodology is widely used by the research community for the purposes of multiple object tracking. This problem consists in the recursive state estimation of several targets by using the information coming from an observation process. The purpose of this paper is to investigate the potential of the PHD filters for real-time traffic state estimation. This investigation is based on a Cell Transmission Model (CTM) coupled with the PHD filter. It brings a novel tool to the state estimation problem and allows to estimate the densities in traffic networks in the presence of measurement origin uncertainty, detection uncertainty and noises. In this work, we compare the PHD filter performance with a particle filter (PF), both taking into account the measurement origin uncertainty and show that they can provide high accuracy in a traffic setting and real-time computational costs. The PHD filtering framework opens new research avenues and has the abilities to solve challenging problems of vehicular networks.
机译:概率假设密度(PHD)方法已被研究界广泛用于多目标跟踪的目的。这个问题在于通过使用来自观察过程的信息对几个目标进行递归状态估计。本文的目的是研究PHD滤波器在实时交通状态估计中的潜力。该研究基于与PHD滤波器耦合的信元传输模型(CTM)。它为状态估计问题带来了一种新颖的工具,并允许在存在测量起点不确定性,检测不确定性和噪声的情况下估计交通网络中的密度。在这项工作中,我们将PHD滤波器的性能与粒子滤波器(PF)进行了比较,同时考虑了测量原点的不确定性,并表明它们可以在交通设置和实时计算成本方面提供高精度。 PHD过滤框架开辟了新的研究途径,并具有解决车载网络难题的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号